Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT In September 2017, over 450 lives were lost in Mexico as a result of two unusual, large-magnitude, normal earthquakes. On 7 September, an M 8.2 earthquake occurred offshore of the State of Oaxaca in the Gulf of Tehuantepec, one of the largest extensional earthquakes to have occurred in a subduction zone. Twelve days later on 19 September an M 7.1 damaging earthquake struck near Puebla and Morelos, over 600 km away. Both earthquakes occurred in the downgoing Cocos plate, which is subducting beneath the North American plate. The first large event was followed on 23 September by a shallow M 6.1 extensional earthquake near Juchitán de Zaragoza, Oaxaca. Researchers from Mexico and the United States collaborated to deploy a temporary seismic network to study the aftershocks of the M 8.2 Tehuantepec, Mexico, earthquake, which included a three-week deployment of 51 Magseis Fairfield Z-Land 5-Hz three-component nodal seismometers (“nodes”) near Juchitán and a 6-month deployment of 10 Nanometrics Trillium 120PA broadband seismometers with Reftek RT130 dataloggers for 6 months. In this article, we analyze the capabilities of the nodes to calculate the horizontal/vertical (H/V) spectral ratio and relative amplification using both microtremors and earthquakes and validate the results calculated with the nodes using data from broadband stations from this and previous deployments in the area. We create maps showing a correlation of the distribution of the fundamental frequency and relative amplification of the soil and compare them with the geology and the damage caused by the September 2017 earthquakes. There is a lack of public awareness and discrepancies in the construction procedures in the region, and we find that the majority of damaged houses in the area of study followed the location of river beds and tended to be in places with low resonance frequencies despite being in a low amplification zone.more » « less
-
Abstract The La Crucecita earthquake ruptured on the megathrust, generating strong shaking and a modest but long-lived tsunami. This is a significant earthquake that illuminates important aspects of the behavior of the megathrust as well as the potential related hazards. The rupture is contained within 15–30 km depth, ground motions are elevated, and the energy to moment ratio is high. We argue that it represents a deep megathrust earthquake, the 30 km depth is the down-dip edge of slip. The inversion is well constrained, ruling out any shallow slip. It is the narrow seismogenic width and the configuration of the coastline that allow for deformation to occur offshore. The minor tsunamigenesis can be accounted for by the deep slip patch. There is a significant uplift at the coast above it, which leads to negative maximum tsunami amplitudes. Finally, tide-gauge recordings show that edge-wave modes were excited and produce larger amplitudes and durations in the Gulf of Tehuantepec.more » « less
-
Summary Mexico has a complex geological history that is typified by the distinctive terranes that are found in the south-central region. Crustal thickness variations often correlate with geological terranes that have been altered by several processes in the past, for example aerial or subduction erosion, underplating volcanic material or rifting but few geophysical studies have locally imaged the entire continental crust in Mexico. In this paper, the thickness of three layers of the crust in south-central Mexico is determined. To do this, we use P- and S-wave receiver functions (RF) from 159 seismological broad-band stations. Thanks to its adaptive nature, we use an empirical mode decomposition (EMD) algorithm to reconstruct the RFs into intrinsic mode functions (IMF) in order to enhance the pulses related to internal discontinuities within the crust. To inspect possible lateral variations, the RFs are grouped into quadrants of 90°, and their amplitudes are mapped into the thickness assuming a three-layer model. Using this approach, we identify a shallow sedimentary layer with a thickness in the range of 1–4 km. The upper-crust was estimated to be of a few kilometers (<10 km) thick near the Pacific coast, and thicker, approximately 15 km in central Oaxaca and under the Trans-Mexican Volcanic Belt (TMVB). Close to the Pacific coast, we infer a thin crust of approximately 16 ± 0.9 km, while in central Oaxaca and beneath the TMVB, we observe a thicker crust ranging between 30 and 50 km ± 2.0 km. We observe a crustal thinning, of approximately 6 km, from central Oaxaca (37 ± 1.9 km) towards the Gulf of Mexico, under the Veracruz Basin, where we estimate a crustal thickness of 31.6 ± 1.9 km. The boundary between the upper and lower crust in comparison with the surface of the Moho do not show significant variations other than the depth difference. We observe small crustal variations across the different terranes on the study area, with the thinnest crust located at the Pacific coast and Gulf of Mexico coast. The thickest crust is estimated to be in central Oaxaca and beneath the TMVB.more » « less
An official website of the United States government
